Integral using Substitution (Complex Exponential Functions)
I =
∫
e
3
x
2
+
4
x
-
1
(
3
x
+
2
)
d
x
Put
u
=
3
x
2
+
4
x
-
1
, then
d
u
=
(
6
x
+
4
)
d
x
Or,
1
2
d
u
=
(
3
x
+
2
)
d
x
So,
I =
∫
e
u
(
1
2
)
d
u
Or,
I =
1
2
∫
e
u
d
u
Or,
I =
1
2
e
u
+
C
Or,
I =
1
2
e
3
x
2
+
4
x
-
1
+
C
Algebra
Analytic Geometry
Differential Calculus
Integral Calculus
Home
Copyright © Dayal D. Purohit, Ph.D.(Mathematics)