Integral using Substitution (Complex Exponential Functions)
I =
∫
e
2
x
3
+
12
x
2
-
6
(
x
2
+
4
x
)
d
x
Put
u
=
2
x
3
+
12
x
2
-
6
, then
d
u
=
(
6
x
2
+
24
x
)
d
x
Or,
1
6
d
u
=
(
x
2
+
4
x
)
d
x
So,
I =
∫
e
u
(
1
6
)
d
u
Or,
I =
1
6
∫
e
u
d
u
Or,
I =
1
6
e
u
+
C
Or,
I =
1
6
e
2
x
3
+
12
x
2
-
6
+
C
Algebra
Analytic Geometry
Differential Calculus
Integral Calculus
Home
Copyright © Dayal D. Purohit, Ph.D.(Mathematics)